
Special Aspects of HCI: 
Prototyping with Arduino

Using the Arduino Open Hardware Platform to sketch and develop physical interactions 
and tangible user interfaces



Prototyping with Arduino

Today: 
Introduction
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Prototyping with Arduino

About this course	

• Lecture 
• Theoretical background and hand on sessions 

• Project Work 
• Create a interactive thing including a Arduino (or some other kind of 

microcontroller) 
• Presenting your project idea in the first week of June 
• In groups with up to 3 persons 
• Document your process of creating 
• Fix deadline: 30.9.2018 (early submission is possible)
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Prototyping with Arduino

Timetable

Session Date Topic

1 Introduction
2 Crash course electrical engineering

3 Analog vs digital signals

4 Communication

5

6 Presentation of project ideas

7

8

9

After that: project work. 
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Prototyping with Arduino

Old projects TBD
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Prototyping with Arduino

Where to get information about Arduinos and 
inspiration for your project?
• Books and magazines 
• Arduino Cookbook (Michael Margolis, O’REILLY) 
• Programming Interactivity (Joshua Noble, O‘REILLY) 
• MAKE: MAGAZINE 

• Internet 
• arduino.cc 
• instructables.com
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Prototyping with Arduino

Let’s have look at an Arduino Uno

7

Power-Supply (7–12 V)

USB-Port 

USB2Serial Digital Pins (Input/Output)

Clock (quartz)

Reset-Pushbutton

Serial In/Out Control LEDs

Voltage regulator Microcontroller

Analog Pins (Input only)

Power Pins (5V/Ground)

Built-in LED



Prototyping with Arduino

• Small computer on a single integrated circuit (IC) 

• Contains a processor core, memory, and programmable input/output peripherals 

• Program memory is often included on chip 

• Typically small amount of RAM  
(4-8kb in Arduino ATmega case)  

• Microcontrollers are designed for embedded applications,  
usually programmed for one specific task 

• Usually just one process at a time

What is a microcontroller?
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1. „Chip“ by Henner Zelleris licensed under CC BY-SA 2.0. 
2. „ATtiny4313-PU “ by Windell Oskay licensed under CC BY 2.0.

https://www.flickr.com/photos/hzeller/4261947266/
https://creativecommons.org/licenses/by-sa/2.0/
https://www.flickr.com/photos/oskay/5410572058/in/photostream/
https://creativecommons.org/licenses/by/2.0/


Prototyping with Arduino

• Open source hardware and software platform 

• Designed to make the process of using electronics 
in multidisciplinary projects more accessible 

• Based on different Atmel AVR microcontrollers 

• Make the functions of the microcontroller  
easily accessible through: 
• Pin bar for input and output 
• USB interface for programming 
• Power supply 
• Reset-Button

Arduino Platform
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1. „Genuino UNO “ by Arduino licensed under CC BY-SA 3.0. 
2. „Arduino IDE “ by Wlanowski licensed under CC BY-SA 4.0.

https://commons.wikimedia.org/wiki/File:Genuino_uno.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Arduino-ide-1.6.0-german.PNG
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Prototyping with Arduino

Arduino Boards & Shields

10

• Arduino Duemilanove 
• ATmega168/328P 
• 14/6 Pins (digital/analog) 

• Arduino Mega(2560) 
• ATmega1280/2560 
• 54/16 Pins (digital/analog) 

• Arduino Nano 
• ATmega168 or ATmega328 
• 14/8 Pins (digital/analog) 

• Arduino Mini Pro 
• ATmega168 
• 14/6 Pins (digital/analog)

• Shields are stackable 
• Shields adding functionality to 

Arduino boards like: 
• Networking 
• Controlling electrical motor 
• Sound 
• … 



Prototyping with Arduino

• Arduino programming language is a  
combination of C and C++ 
• Arduino IDE 
• Plugin for Eclipse and Visual Studio 
• Each Arduino program have to consists at  

least out of a setup and a loop function 
• void setup() – initializing the microcontroller 
• void loop() – measuring and processing input 

	 	        generate output

Arduino programming
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Prototyping with Arduino

• Measure Input 
• Analog and digital: Buttons, temperature, light, sound, serial devices, … 

•  Process 
• Process input through the program code 

• Generate Output 
• Digital: High/Low, PWM, serial signals

IPO Model
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Prototyping with Arduino

• Protoboard / Breadboard 
• Vertical and Horizontal connectors 
• Plug wires and connect components 
• Avoid soldering 
• Speed up sketching 
• Avoid complex planning of electrical circuits

Prototyping Tools
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Prototyping with Arduino

Fritzing (www.fritzing.org)

Planning and documentation

14



Prototyping with Arduino

Where to get parts for your project?
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Prototyping with Arduino

• Goal: Let LED blink 

• Steps to go: 
• See through the kits 
• Create an electronic circuit 
• Connect electronic circuit with Arduino board 
• Write code to let LED blink 5 times/second 
• Upload code to the Arduino board 

• Play arround: 
• Change parameters, add more LEDs 
• Be inspired for more complex projects 
• Have fun!

Hands on!
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Prototyping with Arduino

Wiring the circuit
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Long leg of the Led is the positive pole. 
Use a 220 Ohm resistor to limit the current (Why? We’ll learn it in a later session)



Prototyping with Arduino

• Use this basic structure  
 
// the setup function runs once when you press reset or power the board  
void setup() { 
  // insert initialization here  
} 
 
// the loop function runs over and over again forever 
void loop() { 
  // insert program logic here  
} 

• Methods to get the job done
• pinMode(pin, mode);

• pin: the pin number
• mode: INPUT, OUTPUT, or INPUT_PULLUP

• digitalWrite(pin, value);
• pin: the pin number
• value: HIGH or LOW

• delay(time);
• Time: time in milliseconds 

18



Prototyping with Arduino

• One possible solution 
const int pinNumber = 2;
const int waitingTime = 100; // in ms

// the setup function runs once when you press reset or power the board  
void setup() { 
     // initialize digital pin 2 as an output. 
    pinMode(pinNumber, OUTPUT); 
} 
 
// the loop function runs over and over again forever 
void loop() { 
    digitalWrite(pinNumber, HIGH);   // turn the LED on by making the voltage HIGH  
    delay(waitingTime);           // wait for 100 ms 
    digitalWrite(pinNumber, LOW);   // turn the LED off by making the voltage LOW 
    delay(waitingTime);             // wait for 100 ms 
}
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Special Aspects of HCI: 
Prototyping with Arduino

Using the Arduino Open Hardware Platform to sketch and develop physical interactions 
and tangible user interfaces



Prototyping with Arduino

Today:  
communication 

2



Prototyping with Arduino

• Parallel 
• Multiple wire for data 
• All bits are transmitted at the same 

time

Types of communication	

3

• Serial 
• One wire for data 
• Bits are transmitted one after 

another 

„Parallel and Serial Tranmission“ by Mattias Campe licensed under CC BY-SA 3.0.



Prototyping with Arduino

• All Arduino boards have at least one UART / serial port 
• UART is for serial communication 
• Does only allow two endpoints 
• UART can be used to show debug messages on a PC 
• UART can also be used for communication between two Arduinos

Universal Asynchronous Receiver Transmitter 
(UART)

4



Prototyping with Arduino

• Initialization: 
• Serial.begin(int baudrate); 

• Read and write: 
• Serial.println(char[]);	 	  
• Serial.print(char[]);	 	  
• Serial.write(byte[]);	 	  
• byte Serial.read();	 	  
• boolean Serial.available();	  

• Close the connection: 
• Serial.end()

UART Arduino Code Snippets
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Prototyping with Arduino

 
 
void setup()  
{ 
   Serial.begin(9600); 
} 
 
void loop() 
{ 
   Serial.println("Hello world"); 
}

Send data from arduino to PC
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How to see data on PC?
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Prototyping with Arduino

Use UART for communication between two Arduinos
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Connect RX to TX and TX to RX 
Use a wire and connect GND-pins



Prototyping with Arduino

• Goal: turn on/off a LED connected to board A by pressing a button 
connected to board B 
• Two groups work together 
• Use UART

Hands on

9



Prototyping with Arduino 10

Wiring the circuit



Prototyping with Arduino

Schematic
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Prototyping with Arduino

• Methods form previous sessions about input and output

• void Serial.begin(baudrate); 
• baudrate: number of byte transmitted per second (use 9600 here)

• byte Serial.read(); 
• Return: first byte recieved by RX (if data is available) as int 

• int Serial.available() 
• Return: Get the number of bytes available for reading from the serial port 

• byte Serial.write(value); 
• value: a value to send as a single byte

Methods to get the job done
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Prototyping with Arduino

int inputPin = 2;   	 // choose the input pin (for a pushbutton)
int buttonValue = 0; // variable for reading the pin status, HIGH=pressed, LOW=released

void setup() 
{ 
  Serial.begin(9600);
  pinMode(inputPin, INPUT);   	 // declare pushbutton as input 
} 

void loop()
{ 
  buttonValue = digitalRead(inputPin);  	 // read input value 
  Serial.write(buttonValue);	
}

Possible solution for sender

13



Prototyping with Arduino

int ledPin = 2;   	  //choose the pin for the LED 
int incomingByte = 0; 	 // variable for reading the pin status, HIGH=pressed, LOW=released

void setup() 
{ 
  Serial.begin(9600);
  pinMode(ledPin, OUTPUT);   // declare pushbutton as input 
} 

void loop()
{ 
	 if (Serial.available() > 0)  
	 { 
   	       incomingByte = Serial.read(); // read the incoming byte 
               digitalWrite(ledPin, incomingByte);

}
}

Possible solution for receiver
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Prototyping with Arduino

• Use a communication bus 
• I²C or SPI 

• Sensors and shields are often use a bus

Want to connect more than two devices?

15

„I²C“ by Colin M.L. Burnett licensed under CC BY-SA 3.0. 
„SPI“ by Colin M.L. Burnett licensed under CC BY-SA 3.0. 

I²C
SPI



Prototyping with Arduino

Inter-Integrated Circuit - I²C 
• Master and slaves  

• Master generates clock 
• Slave only responses when addressed by master 
• Communication is only between master and slave, not slave to slave 

• Only needs two wires 
• Up to 112 nodes  
• Each node has a unique address 
• Use Wire library 
• I²C uses special pins on arduino boards 

• For Arduino Uno A4 for data, A5 for clock

Lets have a deeper look at I²C
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Prototyping with Arduino

Master 
(1) Initailize Master: 
• Wire.begin(); 

(2) Request data: 
• Wire.requestFrom(8, 9); 

(4) Read received data: 
• while (Wire.available())  

{  
    byte b = Wire.read(); 
}

Master-slave communication -  
Requesting data from slave

17

Slave 
(1) Initailize Slave: 
• Wire.begin(8); 
• Wire.onRequest(requestEvent); 

(3) Receive request and write data: 
• void requestEvent()  

{ 
	 Wire.write("UniSiegen"); 
}



Prototyping with Arduino

Master 
(1) Initailize Master: 
• Wire.begin(); 

(2) Sending data: 
• Wire.beginTransmission(8);  

Wire.write("x"); 
Wire.endTransmission();

Master-slave communication -  
Sending data to slave

18

Slave 
(1) Initailize Slave: 

• Wire.begin(8); 
• Wire.onReceive(receiveEvent); 

(3) Receive data: 
• void receiveEvent(int howMany)  

{ 
  	 while (Wire.available())  
	 {  
	    byte b = Wire.read(); 
	    //Process data 
  	 } 
}



Prototyping with Arduino

• Goal: turn on/off a LED connected to board A by pressing a button 
connected to board B 
• Two groups work together 
• Use I²C 

• Optional: use 3 boards: 
• Board A: master (control) 
• Board B: button (input) 
• Board C: led (output)

Hands on

19
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Wiring the circuit



Prototyping with Arduino

Schematic

21



Prototyping with Arduino

• void Wire.begin(address);
• address: keep blank for master, number < 112 for slave

• byte Wire.requestFrom();
• Used by the master to request bytes from a slave device. The bytes may then be retrieved with the available() and read() functions. 

• void Wire.onRequest(handler)
• Register a function to be called when a master requests data from this slave device. 
• handler: the function to be called, takes no parameters and returns nothing 

• byte Wire.read();
• Return: The next byte received 

• byte Wire.write();
• Writes data from a slave device in response to a request from a master, or queues bytes for transmission from a master to slave 

device (in-between calls to beginTransmission() and endTransmission()) 

• void Wire.beginTransmission(address);
• Begin a transmission to the I2C slave device with the given address. 
• Address: address of slave 

• byte Wire.endTransmission();
• Ends a transmission to a slave device that was begun by beginTransmission() and transmits the bytes that were queued by write(). 
• Return: byte, which indicates the status of the transmission

Methods to get the job done

22



Special Aspects of HCI: 
Prototyping with Arduino

Using the Arduino Open Hardware Platform to sketch and develop physical interactions 
and tangible user interfaces



Prototyping with Arduino

Today:  
analog vs digital signals 
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Prototyping with Arduino

• Can be 0 or 1, LOW or HIGH 
• For inputs: 
• The voltage have to be greater than 3V to be recognized as HIGH 
• The voltage have to be lower than 1.5V to be recognized as LOW 
• A voltage of 2.5V can be LOW or HIGH depending on the  

previous state 
• If its rising from low to high (1V->2.5V), the state is still LOW 
• If its falling from high to low (4.5V->2.5V), the state is still HIGH 

• For outputs: 
• HIGH = 5V 
• LOW = 0V

Digital signals

3

5V VCC

3V VIH

1.5V VIL

0V GND



Prototyping with Arduino

• Can represent a infinite amount of values between to points (0V and 
5V) 
• Its continuous in time, for each point in time there is a value 
• Physical phenomenon can be descript with analog signals 
• E.g. Light, sound, temperature, voltage 

• To process an analog signal with an Arduino it need to convert to a 
digital signal

Analog signals
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Prototyping with Arduino

• in a specific time interval the analog signal is measured 
• the measured value is converted into a digital value according to the 

resolution of the converter

Analog digital converter
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Prototyping with Arduino

• Arduino uno has 6 analog inputs (A0-A5) 
• Analog inputs only can read voltages between 0 and 5V 
• Arduino ADC has a resolution of 10 bits -> 1024 steps, 0 - 1023  
• Values can be read in 5V/1024 = 0,00488V steps 
• Analog inputs don’t have to be initialized with pinMode() 
• Get the value from analog input with analogRead(pin_number);

Analog inputs
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Prototyping with Arduino

• Goal: control a LED with a potentiometer 
• For analog value from 0-255: LED off 
• 256-511: LED blink 1 time per second 
• 512-767: LED blink 2 times per second 
• 768-1023: LED blink 3 times per second 
• On:off ration = 1:1

Hands on
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Prototyping with Arduino

Wiring the circuit

8



Prototyping with Arduino

Schematic
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Prototyping with Arduino

• void setup() and void loop()
• void pinMode(pin, mode);

• pin: the pin number
• mode: INPUT, OUTPUT, or INPUT_PULLUP

• void digitalWrite(pin, value);
• pin: the pin number
• value: HIGH or LOW

• int analogRead(pin);
• pin: the pin number of analog input
• Returns: an integer between 0 and 1023

• void delay(time);
• time: time to wait in milliseconds

• unsigned long millis();
• Return: Number of milliseconds since the program started (unsigned long)

Methods to get the job done
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Prototyping with Arduino

int ledPin = 2; 	 	 // choose the pin for the LED  
int analogPin = 0;   	 // choose the input pin  
int potiValue = 0; 	 // variable to store the value read  
int waitingTime = 0;	 // variable to store the time to wait before toggle LED  
int lastToggle = 0;	  //variable to store the last time the led was toggled  
int ledState = 0; 
 
void setup() { 
   pinMode(ledPin, OUTPUT);  	// declare LED as output 
} 
 
void loop() 
{ 
   potiValue = analogRead(analogPin);     	 // read the input pin  
   if(potiValue <=255)  
   { 
      waitingTime = -1; 
      digitalWrite(ledPin, LOW);  
   }  
   else if(potiValue <= 511) 
   { 
      waitingTime = 500; 
   }  
   else if(potiValue <= 767)  
   { 
      waitingTime = 250  
   }  
   else  
   { 
      waitingTime = 167; 
   } 
 
   if((millis() - lastToggle) >= waitingTime && waitingTime > 0) 
   {  
      ledState = !ledState; // toggle ledState  
      digitalWrite(ledPin, ledState);  
      lastToggle = millis(); 
   } 	  
}

11



Prototyping with Arduino

• Are used to dim light or control speed of a motor 
• There are no real analog outputs on an Arduino Uno 
• There are Arduinos with real analog outputs, but they are more expensive 

• You can simulate an analog signal with Pulse-Width-Modulation 
(PWM)

Analog outputs

12



Prototyping with Arduino

• A PWM signal is a square wave with values of low and high (0V or 5V) 
• It has a fixed time period (Delta T) 
• Default: 2ms (500Hz) 

• You can control the ratio between 
high and low (duty-cycle) 
• In 8 bit resolution 
• 0 = always off 
• 255 always on

Pulse-Width-Modulation

13



Prototyping with Arduino

• Which pins can be used for PWM? 

• How to use? 
• Initialize the pin as output: 	 pinMode(pwmPin, OUTPUT); 
• Write analog value to pin: 	 analogWrite(pwmPin, value); 

• Use for what?
• E.g. to dim LED by turning it rapidly on and off again

Pulse-Width-Modulation

14



Prototyping with Arduino

• Goal: dim a LED with a potentiometer 

• Steps: 
• Use the previous circuit 
• Adjust your previous code 
• Use the analog value from potentiometer to dim the LED 

• Attention: potentiometer value range from 0-1023 and dim value range from 0-255

Hands on!
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Prototyping with Arduino

Wiring the circuit

16



Prototyping with Arduino

int ledPin = 2; // LED connected to digital pin 2  
int analogPin = 0; // potentiometer connected to analog pin 0  
int potiValue = 0; // variable to store the read value  
 
void setup()  
{  
   pinMode(ledPin, OUTPUT); // sets the pin as output  
}  
 
void loop()  
{ 
   potiValue = analogRead(analogPin); // read the input pin  
   analogWrite(ledPin, potiValue / 4);  
}

17



Prototyping with Arduino

• Goal: combine your knowledge 
• Use button(s) 
• Use LED(s) 
• Use some kind of analog input (potentiometer, fotoresistor…) 

• Play around and have fun!

Hands on!
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Prototyping with Arduino

• We keep it simple 
• No scientific claim 

• Some rules for us 
• Only use direct voltage and direct current 
• Keep Voltage below 30 Volt

Refreshing the basics
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Prototyping with Arduino

• Symbol: U 
• Unit: V (Volt) 
• is the difference in electric potential between two points 
• High difference = high voltage

Voltage

4

Low potential

High potential
Difference, 

wants to be zero

Water analogy



Prototyping with Arduino

• Symbol: I 
• Unit: A (Ampere) 
• Is the process of leveling out different potentials 
• Is basically the number of electron flowing through a conductor per 

time

Electrical current

5

Low potential

High potential



Prototyping with Arduino

• Symbol: R 
• Unit: Ω (Ohm) 
• is the difficulty for the current to flow through a conductor 
• Every conductor has a specific resistance 

• Conductors like copper or gold: low resistance 
• Isolators like plastic or glass: high resistance

Electrical resistance
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Low potential

High potential

High resistance
Low potential

High potential

Low resistance
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• Fixed resistance 
• Manually changeable 
• Resistance depends on other physical parameters  

(like light or temperature)

Resistor

7

3mm

6mm

5mm

15mm
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• How voltage, current and resistance interact?

Ohm's law

8

𝑈 = 𝑅 ∙ 𝐼

𝐼 =
𝑈
𝑅

𝑅 =
𝑈
𝐼



Prototyping with Arduino

• The resistance adds up with a series circuit  
•

• The total voltage is divided in the ratio of resistances 

•

• The current flow is the same in each part 
•

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅1 + 𝑅2

𝑈1

𝑈2
=

𝑅1

𝑅2

𝐼 = 𝐼1 = 𝐼2

Series circuit and voltage divider
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𝐼1

𝐼2

𝑈 = 𝑈1 + 𝑈2

𝑈1

𝑈0
=

𝑅1

𝑅1 + 𝑅2
  = > 𝑈1 = 𝑈0 ∙

𝑅1

𝑅1 + 𝑅2

𝑈0

𝑈2
=

𝑅1 + 𝑅2

𝑅2
  = > 𝑈2 = 𝑈0 ∙

𝑅2

𝑅1 + 𝑅2
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• Some components just can handle a specific amount of voltage 
• Popular example: light emitting diode (LED) 

• Use a resistor to lower the voltage

Voltage divider for output

10



Prototyping with Arduino

• Example:  
• LED can handle 2 – 2.5V (depending on type, see datasheet) 
• LED need around 20mA to light up (depending on type, see datasheet) 
• Arduino supplies 5V 
• 2.5 – 3V too much, needs to be compensated by resistor

How to calculate the resistor

11

𝑈0 = 5𝑉

𝐼 = 20𝑚𝐴

𝑅 𝑈1 = 3𝑉

𝑈2 = 2𝑉
𝑅 =  

𝑈1

𝐼
=  

3𝑉
20 ∙ 10−3𝐴

= 150 Ω
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• What is the difference between this circuits? 

• An Arduino cant measure current directly, only voltage

Voltage divider for input

12

𝑈0 𝑈1 𝑅1

𝐼

𝑈0 = 5𝑉
𝑅1 = 100Ω

𝑈1 =  ?
𝐼 =  ?

𝑈0 𝑈1 𝑅1

𝐼

𝑈0 = 5𝑉
𝑅1 = 200Ω

𝑈1 =  ?
𝐼 =  ?



Prototyping with Arduino

Voltage divider for photoresistor (analog input)
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𝑈0 = 5𝑉

𝑅𝐹 = 2…11𝑘𝛺

𝑅𝑟𝑒𝑓 = 4,7𝑘𝛺

𝐼

𝑅𝑟𝑒𝑓 = 𝑅𝑚𝑖𝑛 ∙ 𝑅𝑚𝑎𝑥

𝑈𝑟𝑒𝑓

𝑈𝐹

𝑈𝐹 𝑅𝑚𝑖𝑛
= 𝑈0 ∙

𝑅𝐹

𝑅𝑟𝑒𝑓 + 𝑅
𝐹

= 5𝑉 ∙
2𝑘𝛺

4,7𝑘𝛺 + 2𝑘𝛺
= 1,49𝑉

𝑈𝐹 𝑅𝑚𝑎𝑥
= 𝑈0 ∙

𝑅𝐹

𝑅𝑟𝑒𝑓 + 𝑅
𝐹

= 5𝑉 ∙
11𝑘𝛺

4,7𝑘𝛺 + 11𝑘𝛺
= 3,5𝑉

𝑅𝐹

𝑅𝑟𝑒𝑓

𝑈𝑟𝑒𝑓 𝑅𝑚𝑖𝑛
= 𝑈0 − 𝑈𝐹 𝑅𝑚𝑖𝑛

= 3,51𝑉

𝑈𝑟𝑒𝑓 𝑅𝑚𝑎𝑥
= 𝑈0 − 𝑈𝐹 𝑅𝑚𝑎𝑥

= 1,5𝑉

2  at brightness 
11  at darkness 

𝑘𝛺
𝑘𝛺

To which pin of the Arduino you need to connect point 1 and 5? 

Which point (2, 3 or 4) should you connect to the Arduino to measuring 
the level of brightness? And which Arduino pin do you use?

5

3

4

1 2
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• A digital pin can have two states: LOW or HIGH 
• The voltage have to be greater than 3V to set the pin HIGH 
• The voltage have to be lower than 1.5V to set the pin LOW 
• The range 1.5V and 3V is undefined 
• If the pin isn’t connected to anything is somewhere  

between LOW and High 
• EMF and induction can cause weird errors 
• While using buttons/switches use pull up or pull down resistor to 

set the input on a defined level when the circuit is open

Digital inputs

14

5V VCC

3V VIH

1.5V VIL

0V
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• Pull up 
• Between VCC and Input 
• In open state => the resistor pulls up the input to 5V 
• In closed state => the button pulls the input down to ground 

• Pull down 
• Between Input and ground 
• In open state => the resistor pulls down the input to ground 
• In closed state => the button pulls the input up to 5V 

• Arduinos have a built in pull up 
• The built in pull up can be used by configuring a digital pin with 

pinMode(pin_number, INPUT_PULLUP)

Pull up / pull down resistor

15

Input Pin

4k7

5V

GND

Input Pin
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Prototyping with Arduino

• Goal: control a LED with a button  
1. LED is on when the button is pressed 
2. LED is 5 seconds on after the button is pressed, doesn’t matter how long it is 

pressed 
3. LED toggles each time you press the button, not on release 

• Steps: 
• Create an electronic circuit 
• Connect electronic circuit with Arduino board 
• Write code to control the LED with the button 
• Upload code to the Arduino board

Hands on!
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Prototyping with Arduino

Wiring the circuit
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Prototyping with Arduino

Schematic
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Prototyping with Arduino

• void setup() and void loop()
• void pinMode(pin, mode);

• pin: the pin number
• mode: INPUT, OUTPUT, or INPUT_PULLUP

• void digitalWrite(pin, value);
• pin: the pin number
• value: HIGH or LOW

• int digitalRead(pin);
• pin: the pin number
• Returns: LOW or HIGH

• void delay(time);
• time: time in milliseconds

Methods to get the job done
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Prototyping with Arduino

• One possible solution (1) 

int ledPin = 3; 	 // choose the pin for the LED
int inputPin = 2;   	 // choose the input pin (for a pushbutton)
int buttonValue = 0; // variable for reading the pin status, HIGH=pressed, LOW=released

void setup() 
{ 
  pinMode(ledPin, OUTPUT);  	 // declare LED as output 
  pinMode(inputPin, INPUT);   	 // declare pushbutton as input 
} 

void loop()
{ 
  buttonValue = digitalRead(inputPin);  	 // read input value 
  digitalWrite(ledPin, buttonValue);  	
}
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Prototyping with Arduino

• One possible solution (2) 

int ledPin = 3;	 	 // choose the pin for the LED
int inputPin = 2;   	 	 // choose the input pin (for a pushbutton)
int buttonValue = 0; 	// variable for reading the pin status, HIGH=pressed, LOW=released
int previousButtonValue = 0;
int timeLEDon = 5000;	 // in ms

void setup() 
{ 
  pinMode(ledPin, OUTPUT);  	 // declare LED as output 
  pinMode(inputPin, INPUT);  	 // declare pushbutton as input 
} 

void loop()
{ 
  buttonValue = digitalRead(inputPin);  	 // read input value 
  if(previousButtonValue == LOW && buttonValue == HIGH)
  {
    digitalWrite(ledPin, HIGH);
    delay(timeLEDon):
    digitalWrite(ledPin, LOW);
  }
  previousButtonValue = buttonValue;	
}

21

• Why is this solution bad? 

• What is happening if the button is 
pressed a second time in this 5 
seconds? 

• What would happen if there would be 
two LEDs with one button each and the 
same behavior? 



Prototyping with Arduino

• One possible solution (3) 

int ledPin = 3; 	         // choose the pin for the LED
int inputPin = 2;   	         // choose the input pin (for a pushbutton)
int buttonValue = 0;    // variable for reading the pin status, HIGH=pressed, LOW=released
int previousButtonValue = 0;
int ledState = 0;           // variable for storing the LED state

void setup() 
{ 
  pinMode(ledPin, OUTPUT);  	// declare LED as output 
  pinMode(inputPin, INPUT);   // declare pushbutton as input 
} 

void loop()
{ 
  buttonValue = digitalRead(inputPin);  	 // read input value 
  if(previousButtonValue == LOW && buttonValue == HIGH)
  {
   ledState = !ledState; // toggle ledState
   digitalWrite(ledPin, ledState);
  }
  previousButtonState = buttonState;
}
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Prototyping with Arduino

• Maybe not 
• One reason could be the bouncing of buttons 
• Mechanical buttons physically vibrate - bounce - when they are first pressed or 

released.  
• This creates spurious state changes that need to be filtered or "de-bounced". 
• Bouncing time depends on the button, mostly under 20 ms, can be higher

Did everything work?
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Prototyping with Arduino

• Goal: include some kind of debouncing 

• Steps: 
• Use previous circuit 
• Do it manually 

• Detect a signal edge and wait for a couple of milliseconds 
• After that, process the input as usually 

• Or use Bounce library or Button library 
• Bounce library: https://playground.arduino.cc/Code/Bounce 
• Button library: https://playground.arduino.cc/Code/Button 

Hands on!
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Prototyping with Arduino

int debouncingTime = 20; // in ms

int buttonValue = 0;    // variable for reading the pin status, HIGH=pressed, LOW=released
int previousButtonValue = 0;

void setup() {

  pinMode(inputPin, INPUT);   	 // declare pushbutton as input
} 

void loop(){

  if(millis() - startDebounceTime > debouncingTime){ 

   buttonValue = digitalRead(inputPin);  	 // read input value 

   if(buttonValue != previousButtonValue){ 

     startDebounceTime = millis(); 

    } 

    previousButtonValue = buttonValue; 

   }	

}

Simple manually debounce
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