
Special Aspects of HCI:
Prototyping with Arduino

Using the Arduino Open Hardware Platform to sketch and develop physical interactions
and tangible user interfaces

Prototyping with Arduino

Today:
Introduction

2

Prototyping with Arduino

About this course	

• Lecture
• Theoretical background and hand on sessions

• Project Work
• Create a interactive thing including a Arduino (or some other kind of

microcontroller)
• Presenting your project idea in the first week of June
• In groups with up to 3 persons
• Document your process of creating
• Fix deadline: 30.9.2018 (early submission is possible)

3

Prototyping with Arduino

Timetable

Session Date Topic

1 Introduction
2 Crash course electrical engineering

3 Analog vs digital signals

4 Communication

5

6 Presentation of project ideas

7

8

9

After that: project work.

4

Prototyping with Arduino

Old projects TBD

5

Prototyping with Arduino

Where to get information about Arduinos and
inspiration for your project?
• Books and magazines
• Arduino Cookbook (Michael Margolis, O’REILLY)
• Programming Interactivity (Joshua Noble, O‘REILLY)
• MAKE: MAGAZINE

• Internet
• arduino.cc
• instructables.com

6

Prototyping with Arduino

Let’s have look at an Arduino Uno

7

Power-Supply (7–12 V)

USB-Port

USB2Serial Digital Pins (Input/Output)

Clock (quartz)

Reset-Pushbutton

Serial In/Out Control LEDs

Voltage regulator Microcontroller

Analog Pins (Input only)

Power Pins (5V/Ground)

Built-in LED

Prototyping with Arduino

• Small computer on a single integrated circuit (IC)

• Contains a processor core, memory, and programmable input/output peripherals

• Program memory is often included on chip

• Typically small amount of RAM
(4-8kb in Arduino ATmega case)

• Microcontrollers are designed for embedded applications,
usually programmed for one specific task

• Usually just one process at a time

What is a microcontroller?

8

1. „Chip“ by Henner Zelleris licensed under CC BY-SA 2.0.
2. „ATtiny4313-PU “ by Windell Oskay licensed under CC BY 2.0.

https://www.flickr.com/photos/hzeller/4261947266/
https://creativecommons.org/licenses/by-sa/2.0/
https://www.flickr.com/photos/oskay/5410572058/in/photostream/
https://creativecommons.org/licenses/by/2.0/

Prototyping with Arduino

• Open source hardware and software platform

• Designed to make the process of using electronics
in multidisciplinary projects more accessible

• Based on different Atmel AVR microcontrollers

• Make the functions of the microcontroller
easily accessible through:
• Pin bar for input and output
• USB interface for programming
• Power supply
• Reset-Button

Arduino Platform

9

1. „Genuino UNO “ by Arduino licensed under CC BY-SA 3.0.
2. „Arduino IDE “ by Wlanowski licensed under CC BY-SA 4.0.

https://commons.wikimedia.org/wiki/File:Genuino_uno.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Arduino-ide-1.6.0-german.PNG
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Prototyping with Arduino

Arduino Boards & Shields

10

• Arduino Duemilanove
• ATmega168/328P
• 14/6 Pins (digital/analog)

• Arduino Mega(2560)
• ATmega1280/2560
• 54/16 Pins (digital/analog)

• Arduino Nano
• ATmega168 or ATmega328
• 14/8 Pins (digital/analog)

• Arduino Mini Pro
• ATmega168
• 14/6 Pins (digital/analog)

• Shields are stackable
• Shields adding functionality to

Arduino boards like:
• Networking
• Controlling electrical motor
• Sound
• …

Prototyping with Arduino

• Arduino programming language is a
combination of C and C++
• Arduino IDE
• Plugin for Eclipse and Visual Studio
• Each Arduino program have to consists at

least out of a setup and a loop function
• void setup() – initializing the microcontroller
• void loop() – measuring and processing input

	 	 generate output

Arduino programming

11

Prototyping with Arduino

• Measure Input
• Analog and digital: Buttons, temperature, light, sound, serial devices, …

• Process
• Process input through the program code

• Generate Output
• Digital: High/Low, PWM, serial signals

IPO Model

12

Prototyping with Arduino

• Protoboard / Breadboard
• Vertical and Horizontal connectors
• Plug wires and connect components
• Avoid soldering
• Speed up sketching
• Avoid complex planning of electrical circuits

Prototyping Tools

13

Prototyping with Arduino

Fritzing (www.fritzing.org)

Planning and documentation

14

Prototyping with Arduino

Where to get parts for your project?

15

Prototyping with Arduino

• Goal: Let LED blink

• Steps to go:
• See through the kits
• Create an electronic circuit
• Connect electronic circuit with Arduino board
• Write code to let LED blink 5 times/second
• Upload code to the Arduino board

• Play arround:
• Change parameters, add more LEDs
• Be inspired for more complex projects
• Have fun!

Hands on!

16

Prototyping with Arduino

Wiring the circuit

17

Long leg of the Led is the positive pole.
Use a 220 Ohm resistor to limit the current (Why? We’ll learn it in a later session)

Prototyping with Arduino

• Use this basic structure  
 
// the setup function runs once when you press reset or power the board  
void setup() { 
 // insert initialization here  
} 
 
// the loop function runs over and over again forever 
void loop() { 
 // insert program logic here  
} 

• Methods to get the job done
• pinMode(pin, mode);

• pin: the pin number
• mode: INPUT, OUTPUT, or INPUT_PULLUP

• digitalWrite(pin, value);
• pin: the pin number
• value: HIGH or LOW

• delay(time);
• Time: time in milliseconds

18

Prototyping with Arduino

• One possible solution
const int pinNumber = 2;
const int waitingTime = 100; // in ms

// the setup function runs once when you press reset or power the board  
void setup() { 
 // initialize digital pin 2 as an output. 
 pinMode(pinNumber, OUTPUT);
} 
 
// the loop function runs over and over again forever 
void loop() { 
 digitalWrite(pinNumber, HIGH); // turn the LED on by making the voltage HIGH  
 delay(waitingTime); // wait for 100 ms 
 digitalWrite(pinNumber, LOW); // turn the LED off by making the voltage LOW 
 delay(waitingTime); // wait for 100 ms 
}

19

Special Aspects of HCI:
Prototyping with Arduino

Using the Arduino Open Hardware Platform to sketch and develop physical interactions
and tangible user interfaces

Prototyping with Arduino

Today:
communication

2

Prototyping with Arduino

• Parallel
• Multiple wire for data
• All bits are transmitted at the same

time

Types of communication	

3

• Serial
• One wire for data
• Bits are transmitted one after

another

„Parallel and Serial Tranmission“ by Mattias Campe licensed under CC BY-SA 3.0.

Prototyping with Arduino

• All Arduino boards have at least one UART / serial port
• UART is for serial communication
• Does only allow two endpoints
• UART can be used to show debug messages on a PC
• UART can also be used for communication between two Arduinos

Universal Asynchronous Receiver Transmitter
(UART)

4

Prototyping with Arduino

• Initialization:
• Serial.begin(int baudrate);

• Read and write:
• Serial.println(char[]);	 	
• Serial.print(char[]);	 	
• Serial.write(byte[]);	 	
• byte Serial.read();	 	
• boolean Serial.available();	

• Close the connection:
• Serial.end()

UART Arduino Code Snippets

5

Prototyping with Arduino

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.println("Hello world");
}

Send data from arduino to PC

6

Prototyping with Arduino

How to see data on PC?

7

Prototyping with Arduino

Use UART for communication between two Arduinos

8

Connect RX to TX and TX to RX
Use a wire and connect GND-pins

Prototyping with Arduino

• Goal: turn on/off a LED connected to board A by pressing a button
connected to board B
• Two groups work together
• Use UART

Hands on

9

Prototyping with Arduino 10

Wiring the circuit

Prototyping with Arduino

Schematic

11

Prototyping with Arduino

• Methods form previous sessions about input and output

• void Serial.begin(baudrate);
• baudrate: number of byte transmitted per second (use 9600 here)

• byte Serial.read();
• Return: first byte recieved by RX (if data is available) as int

• int Serial.available()
• Return: Get the number of bytes available for reading from the serial port

• byte Serial.write(value);
• value: a value to send as a single byte

Methods to get the job done

12

Prototyping with Arduino

int inputPin = 2; 	 // choose the input pin (for a pushbutton)
int buttonValue = 0; // variable for reading the pin status, HIGH=pressed, LOW=released

void setup()
{
 Serial.begin(9600);
 pinMode(inputPin, INPUT); 	 // declare pushbutton as input
}

void loop()
{
 buttonValue = digitalRead(inputPin); 	 // read input value
 Serial.write(buttonValue);	
}

Possible solution for sender

13

Prototyping with Arduino

int ledPin = 2; 	 //choose the pin for the LED
int incomingByte = 0; 	 // variable for reading the pin status, HIGH=pressed, LOW=released

void setup()
{
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT); // declare pushbutton as input
}

void loop()
{
	 if (Serial.available() > 0)
	 {
 	 incomingByte = Serial.read(); // read the incoming byte
 digitalWrite(ledPin, incomingByte);

}
}

Possible solution for receiver

14

Prototyping with Arduino

• Use a communication bus
• I²C or SPI

• Sensors and shields are often use a bus

Want to connect more than two devices?

15

„I²C“ by Colin M.L. Burnett licensed under CC BY-SA 3.0.
„SPI“ by Colin M.L. Burnett licensed under CC BY-SA 3.0.

I²C
SPI

Prototyping with Arduino

Inter-Integrated Circuit - I²C
• Master and slaves

• Master generates clock
• Slave only responses when addressed by master
• Communication is only between master and slave, not slave to slave

• Only needs two wires
• Up to 112 nodes
• Each node has a unique address
• Use Wire library
• I²C uses special pins on arduino boards

• For Arduino Uno A4 for data, A5 for clock

Lets have a deeper look at I²C

16

Prototyping with Arduino

Master
(1) Initailize Master:
• Wire.begin();

(2) Request data:
• Wire.requestFrom(8, 9);

(4) Read received data:
• while (Wire.available())

{
 byte b = Wire.read();
}

Master-slave communication -
Requesting data from slave

17

Slave
(1) Initailize Slave:
• Wire.begin(8);
• Wire.onRequest(requestEvent);

(3) Receive request and write data:
• void requestEvent()

{
	 Wire.write("UniSiegen");
}

Prototyping with Arduino

Master
(1) Initailize Master:
• Wire.begin();

(2) Sending data:
• Wire.beginTransmission(8);

Wire.write("x");
Wire.endTransmission();

Master-slave communication -
Sending data to slave

18

Slave
(1) Initailize Slave:

• Wire.begin(8);
• Wire.onReceive(receiveEvent);

(3) Receive data:
• void receiveEvent(int howMany)

{
 	 while (Wire.available())
	 {
	 byte b = Wire.read();
	 //Process data
 	 }
}

Prototyping with Arduino

• Goal: turn on/off a LED connected to board A by pressing a button
connected to board B
• Two groups work together
• Use I²C

• Optional: use 3 boards:
• Board A: master (control)
• Board B: button (input)
• Board C: led (output)

Hands on

19

Prototyping with Arduino 20

Wiring the circuit

Prototyping with Arduino

Schematic

21

Prototyping with Arduino

• void Wire.begin(address);
• address: keep blank for master, number < 112 for slave

• byte Wire.requestFrom();
• Used by the master to request bytes from a slave device. The bytes may then be retrieved with the available() and read() functions.

• void Wire.onRequest(handler)
• Register a function to be called when a master requests data from this slave device.
• handler: the function to be called, takes no parameters and returns nothing

• byte Wire.read();
• Return: The next byte received

• byte Wire.write();
• Writes data from a slave device in response to a request from a master, or queues bytes for transmission from a master to slave

device (in-between calls to beginTransmission() and endTransmission())

• void Wire.beginTransmission(address);
• Begin a transmission to the I2C slave device with the given address.
• Address: address of slave

• byte Wire.endTransmission();
• Ends a transmission to a slave device that was begun by beginTransmission() and transmits the bytes that were queued by write().
• Return: byte, which indicates the status of the transmission

Methods to get the job done

22

Special Aspects of HCI:
Prototyping with Arduino

Using the Arduino Open Hardware Platform to sketch and develop physical interactions
and tangible user interfaces

Prototyping with Arduino

Today:
analog vs digital signals

2

Prototyping with Arduino

• Can be 0 or 1, LOW or HIGH
• For inputs:
• The voltage have to be greater than 3V to be recognized as HIGH
• The voltage have to be lower than 1.5V to be recognized as LOW
• A voltage of 2.5V can be LOW or HIGH depending on the

previous state
• If its rising from low to high (1V->2.5V), the state is still LOW
• If its falling from high to low (4.5V->2.5V), the state is still HIGH

• For outputs:
• HIGH = 5V
• LOW = 0V

Digital signals

3

5V VCC

3V VIH

1.5V VIL

0V GND

Prototyping with Arduino

• Can represent a infinite amount of values between to points (0V and
5V)
• Its continuous in time, for each point in time there is a value
• Physical phenomenon can be descript with analog signals
• E.g. Light, sound, temperature, voltage

• To process an analog signal with an Arduino it need to convert to a
digital signal

Analog signals

4

Prototyping with Arduino

• in a specific time interval the analog signal is measured
• the measured value is converted into a digital value according to the

resolution of the converter

Analog digital converter

5

Prototyping with Arduino

• Arduino uno has 6 analog inputs (A0-A5)
• Analog inputs only can read voltages between 0 and 5V
• Arduino ADC has a resolution of 10 bits -> 1024 steps, 0 - 1023
• Values can be read in 5V/1024 = 0,00488V steps
• Analog inputs don’t have to be initialized with pinMode()
• Get the value from analog input with analogRead(pin_number);

Analog inputs

6

Prototyping with Arduino

• Goal: control a LED with a potentiometer
• For analog value from 0-255: LED off
• 256-511: LED blink 1 time per second
• 512-767: LED blink 2 times per second
• 768-1023: LED blink 3 times per second
• On:off ration = 1:1

Hands on

7

Prototyping with Arduino

Wiring the circuit

8

Prototyping with Arduino

Schematic

9

Prototyping with Arduino

• void setup() and void loop()
• void pinMode(pin, mode);

• pin: the pin number
• mode: INPUT, OUTPUT, or INPUT_PULLUP

• void digitalWrite(pin, value);
• pin: the pin number
• value: HIGH or LOW

• int analogRead(pin);
• pin: the pin number of analog input
• Returns: an integer between 0 and 1023

• void delay(time);
• time: time to wait in milliseconds

• unsigned long millis();
• Return: Number of milliseconds since the program started (unsigned long)

Methods to get the job done

10

Prototyping with Arduino

int ledPin = 2; 	 	 // choose the pin for the LED  
int analogPin = 0; 	 // choose the input pin  
int potiValue = 0; 	 // variable to store the value read  
int waitingTime = 0;	 // variable to store the time to wait before toggle LED  
int lastToggle = 0;	 //variable to store the last time the led was toggled  
int ledState = 0;

void setup() {
 pinMode(ledPin, OUTPUT); 	// declare LED as output 
}

void loop()
{
 potiValue = analogRead(analogPin); 	 // read the input pin  
 if(potiValue <=255)  
 { 
 waitingTime = -1; 
 digitalWrite(ledPin, LOW);
 }  
 else if(potiValue <= 511) 
 { 
 waitingTime = 500; 
 }  
 else if(potiValue <= 767)  
 { 
 waitingTime = 250  
 }  
 else  
 { 
 waitingTime = 167; 
 } 
 
 if((millis() - lastToggle) >= waitingTime && waitingTime > 0) 
 {  
 ledState = !ledState; // toggle ledState  
 digitalWrite(ledPin, ledState);
 lastToggle = millis();
 } 	
}

11

Prototyping with Arduino

• Are used to dim light or control speed of a motor
• There are no real analog outputs on an Arduino Uno
• There are Arduinos with real analog outputs, but they are more expensive

• You can simulate an analog signal with Pulse-Width-Modulation
(PWM)

Analog outputs

12

Prototyping with Arduino

• A PWM signal is a square wave with values of low and high (0V or 5V)
• It has a fixed time period (Delta T)
• Default: 2ms (500Hz)

• You can control the ratio between
high and low (duty-cycle)
• In 8 bit resolution
• 0 = always off
• 255 always on

Pulse-Width-Modulation

13

Prototyping with Arduino

• Which pins can be used for PWM?

• How to use?
• Initialize the pin as output: 	 pinMode(pwmPin, OUTPUT);
• Write analog value to pin: 	 analogWrite(pwmPin, value);

• Use for what?
• E.g. to dim LED by turning it rapidly on and off again

Pulse-Width-Modulation

14

Prototyping with Arduino

• Goal: dim a LED with a potentiometer

• Steps:
• Use the previous circuit
• Adjust your previous code
• Use the analog value from potentiometer to dim the LED

• Attention: potentiometer value range from 0-1023 and dim value range from 0-255

Hands on!

15

Prototyping with Arduino

Wiring the circuit

16

Prototyping with Arduino

int ledPin = 2; // LED connected to digital pin 2  
int analogPin = 0; // potentiometer connected to analog pin 0  
int potiValue = 0; // variable to store the read value  
 
void setup()  
{  
 pinMode(ledPin, OUTPUT); // sets the pin as output  
}  
 
void loop()  
{ 
 potiValue = analogRead(analogPin); // read the input pin  
 analogWrite(ledPin, potiValue / 4);  
}

17

Prototyping with Arduino

• Goal: combine your knowledge
• Use button(s)
• Use LED(s)
• Use some kind of analog input (potentiometer, fotoresistor…)

• Play around and have fun!

Hands on!

18

Special Aspects of HCI:
Prototyping with Arduino

Using the Arduino Open Hardware Platform to sketch and develop physical interactions
and tangible user interfaces

Prototyping with Arduino

Today:
crash course electrical engineering

2

Prototyping with Arduino

• We keep it simple
• No scientific claim

• Some rules for us
• Only use direct voltage and direct current
• Keep Voltage below 30 Volt

Refreshing the basics

3

Prototyping with Arduino

• Symbol: U
• Unit: V (Volt)
• is the difference in electric potential between two points
• High difference = high voltage

Voltage

4

Low potential

High potential
Difference,

wants to be zero

Water analogy

Prototyping with Arduino

• Symbol: I
• Unit: A (Ampere)
• Is the process of leveling out different potentials
• Is basically the number of electron flowing through a conductor per

time

Electrical current

5

Low potential

High potential

Prototyping with Arduino

• Symbol: R
• Unit: Ω (Ohm)
• is the difficulty for the current to flow through a conductor
• Every conductor has a specific resistance

• Conductors like copper or gold: low resistance
• Isolators like plastic or glass: high resistance

Electrical resistance

6

Low potential

High potential

High resistance
Low potential

High potential

Low resistance

Prototyping with Arduino

• Fixed resistance
• Manually changeable
• Resistance depends on other physical parameters

(like light or temperature)

Resistor

7

3mm

6mm

5mm

15mm

Prototyping with Arduino

• How voltage, current and resistance interact?

Ohm's law

8

𝑈 = 𝑅 ∙ 𝐼

𝐼 =
𝑈
𝑅

𝑅 =
𝑈
𝐼

Prototyping with Arduino

• The resistance adds up with a series circuit
•

• The total voltage is divided in the ratio of resistances

•

• The current flow is the same in each part
•

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅1 + 𝑅2

𝑈1

𝑈2
=

𝑅1

𝑅2

𝐼 = 𝐼1 = 𝐼2

Series circuit and voltage divider

9

𝐼1

𝐼2

𝑈 = 𝑈1 + 𝑈2

𝑈1

𝑈0
=

𝑅1

𝑅1 + 𝑅2
 = > 𝑈1 = 𝑈0 ∙

𝑅1

𝑅1 + 𝑅2

𝑈0

𝑈2
=

𝑅1 + 𝑅2

𝑅2
 = > 𝑈2 = 𝑈0 ∙

𝑅2

𝑅1 + 𝑅2

Prototyping with Arduino

• Some components just can handle a specific amount of voltage
• Popular example: light emitting diode (LED)

• Use a resistor to lower the voltage

Voltage divider for output

10

Prototyping with Arduino

• Example:
• LED can handle 2 – 2.5V (depending on type, see datasheet)
• LED need around 20mA to light up (depending on type, see datasheet)
• Arduino supplies 5V
• 2.5 – 3V too much, needs to be compensated by resistor

How to calculate the resistor

11

𝑈0 = 5𝑉

𝐼 = 20𝑚𝐴

𝑅 𝑈1 = 3𝑉

𝑈2 = 2𝑉
𝑅 =

𝑈1

𝐼
=

3𝑉
20 ∙ 10−3𝐴

= 150 Ω

Prototyping with Arduino

• What is the difference between this circuits?

• An Arduino cant measure current directly, only voltage

Voltage divider for input

12

𝑈0 𝑈1 𝑅1

𝐼

𝑈0 = 5𝑉
𝑅1 = 100Ω

𝑈1 = ?
𝐼 = ?

𝑈0 𝑈1 𝑅1

𝐼

𝑈0 = 5𝑉
𝑅1 = 200Ω

𝑈1 = ?
𝐼 = ?

Prototyping with Arduino

Voltage divider for photoresistor (analog input)

13

𝑈0 = 5𝑉

𝑅𝐹 = 2…11𝑘𝛺

𝑅𝑟𝑒𝑓 = 4,7𝑘𝛺

𝐼

𝑅𝑟𝑒𝑓 = 𝑅𝑚𝑖𝑛 ∙ 𝑅𝑚𝑎𝑥

𝑈𝑟𝑒𝑓

𝑈𝐹

𝑈𝐹 𝑅𝑚𝑖𝑛
= 𝑈0 ∙

𝑅𝐹

𝑅𝑟𝑒𝑓 + 𝑅
𝐹

= 5𝑉 ∙
2𝑘𝛺

4,7𝑘𝛺 + 2𝑘𝛺
= 1,49𝑉

𝑈𝐹 𝑅𝑚𝑎𝑥
= 𝑈0 ∙

𝑅𝐹

𝑅𝑟𝑒𝑓 + 𝑅
𝐹

= 5𝑉 ∙
11𝑘𝛺

4,7𝑘𝛺 + 11𝑘𝛺
= 3,5𝑉

𝑅𝐹

𝑅𝑟𝑒𝑓

𝑈𝑟𝑒𝑓 𝑅𝑚𝑖𝑛
= 𝑈0 − 𝑈𝐹 𝑅𝑚𝑖𝑛

= 3,51𝑉

𝑈𝑟𝑒𝑓 𝑅𝑚𝑎𝑥
= 𝑈0 − 𝑈𝐹 𝑅𝑚𝑎𝑥

= 1,5𝑉

2 at brightness
11 at darkness

𝑘𝛺
𝑘𝛺

To which pin of the Arduino you need to connect point 1 and 5?

Which point (2, 3 or 4) should you connect to the Arduino to measuring
the level of brightness? And which Arduino pin do you use?

5

3

4

1 2

Prototyping with Arduino

• A digital pin can have two states: LOW or HIGH
• The voltage have to be greater than 3V to set the pin HIGH
• The voltage have to be lower than 1.5V to set the pin LOW
• The range 1.5V and 3V is undefined
• If the pin isn’t connected to anything is somewhere

between LOW and High
• EMF and induction can cause weird errors
• While using buttons/switches use pull up or pull down resistor to

set the input on a defined level when the circuit is open

Digital inputs

14

5V VCC

3V VIH

1.5V VIL

0V

Prototyping with Arduino

• Pull up
• Between VCC and Input
• In open state => the resistor pulls up the input to 5V
• In closed state => the button pulls the input down to ground

• Pull down
• Between Input and ground
• In open state => the resistor pulls down the input to ground
• In closed state => the button pulls the input up to 5V

• Arduinos have a built in pull up
• The built in pull up can be used by configuring a digital pin with

pinMode(pin_number, INPUT_PULLUP)

Pull up / pull down resistor

15

Input Pin

4k7

5V

GND

Input Pin

GND

10k

5V

Pull up

Pull down

Prototyping with Arduino

• Goal: control a LED with a button
1. LED is on when the button is pressed
2. LED is 5 seconds on after the button is pressed, doesn’t matter how long it is

pressed
3. LED toggles each time you press the button, not on release

• Steps:
• Create an electronic circuit
• Connect electronic circuit with Arduino board
• Write code to control the LED with the button
• Upload code to the Arduino board

Hands on!

16

Prototyping with Arduino

Wiring the circuit

17

Prototyping with Arduino

Schematic

18

Prototyping with Arduino

• void setup() and void loop()
• void pinMode(pin, mode);

• pin: the pin number
• mode: INPUT, OUTPUT, or INPUT_PULLUP

• void digitalWrite(pin, value);
• pin: the pin number
• value: HIGH or LOW

• int digitalRead(pin);
• pin: the pin number
• Returns: LOW or HIGH

• void delay(time);
• time: time in milliseconds

Methods to get the job done

19

Prototyping with Arduino

• One possible solution (1)

int ledPin = 3; 	 // choose the pin for the LED
int inputPin = 2; 	 // choose the input pin (for a pushbutton)
int buttonValue = 0; // variable for reading the pin status, HIGH=pressed, LOW=released

void setup()
{
 pinMode(ledPin, OUTPUT); 	 // declare LED as output
 pinMode(inputPin, INPUT); 	 // declare pushbutton as input
}

void loop()
{
 buttonValue = digitalRead(inputPin); 	 // read input value
 digitalWrite(ledPin, buttonValue); 	
}

20

Prototyping with Arduino

• One possible solution (2)

int ledPin = 3;	 	 // choose the pin for the LED
int inputPin = 2; 	 	 // choose the input pin (for a pushbutton)
int buttonValue = 0; 	// variable for reading the pin status, HIGH=pressed, LOW=released
int previousButtonValue = 0;
int timeLEDon = 5000;	 // in ms

void setup()
{
 pinMode(ledPin, OUTPUT); 	 // declare LED as output
 pinMode(inputPin, INPUT); 	 // declare pushbutton as input
}

void loop()
{
 buttonValue = digitalRead(inputPin); 	 // read input value
 if(previousButtonValue == LOW && buttonValue == HIGH)
 {
 digitalWrite(ledPin, HIGH);
 delay(timeLEDon):
 digitalWrite(ledPin, LOW);
 }
 previousButtonValue = buttonValue;	
}

21

• Why is this solution bad?

• What is happening if the button is
pressed a second time in this 5
seconds?

• What would happen if there would be
two LEDs with one button each and the
same behavior?

Prototyping with Arduino

• One possible solution (3)

int ledPin = 3; 	 // choose the pin for the LED
int inputPin = 2; 	 // choose the input pin (for a pushbutton)
int buttonValue = 0; // variable for reading the pin status, HIGH=pressed, LOW=released
int previousButtonValue = 0;
int ledState = 0; // variable for storing the LED state

void setup()
{
 pinMode(ledPin, OUTPUT); 	// declare LED as output
 pinMode(inputPin, INPUT); // declare pushbutton as input
}

void loop()
{
 buttonValue = digitalRead(inputPin); 	 // read input value
 if(previousButtonValue == LOW && buttonValue == HIGH)
 {
 ledState = !ledState; // toggle ledState
 digitalWrite(ledPin, ledState);
 }
 previousButtonState = buttonState;
}

22

Prototyping with Arduino

• Maybe not
• One reason could be the bouncing of buttons
• Mechanical buttons physically vibrate - bounce - when they are first pressed or

released.
• This creates spurious state changes that need to be filtered or "de-bounced".
• Bouncing time depends on the button, mostly under 20 ms, can be higher

Did everything work?

23

ideal button is pressed

Va
lu

e

0

1

Time

real button is pressed

Va
lu

e

0

1

TimeBouncing time

Prototyping with Arduino

• Goal: include some kind of debouncing

• Steps:
• Use previous circuit
• Do it manually

• Detect a signal edge and wait for a couple of milliseconds
• After that, process the input as usually

• Or use Bounce library or Button library
• Bounce library: https://playground.arduino.cc/Code/Bounce
• Button library: https://playground.arduino.cc/Code/Button

Hands on!

24

Prototyping with Arduino

int debouncingTime = 20; // in ms

int buttonValue = 0; // variable for reading the pin status, HIGH=pressed, LOW=released
int previousButtonValue = 0;

void setup() {

 pinMode(inputPin, INPUT); 	 // declare pushbutton as input
}

void loop(){

 if(millis() - startDebounceTime > debouncingTime){

 buttonValue = digitalRead(inputPin); 	 // read input value

 if(buttonValue != previousButtonValue){

 startDebounceTime = millis();

 }

 previousButtonValue = buttonValue;

 }	

}

Simple manually debounce

25

